
ACM Reference Format
Ho, E., Komura, T., Tai, C. 2010. Spatial Relationship Preserving Character Motion Adaptation.
ACM Trans. Graph. 29, 4, Article 33 (July 2010), 8 pages. DOI = 10.1145/1778765.1778770
http://doi.acm.org/10.1145/1778765.1778770.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2010 ACM 0730-0301/2010/07-ART33 $10.00 DOI 10.1145/1778765.1778770
http://doi.acm.org/10.1145/1778765.1778770

Spatial Relationship Preserving Character Motion Adaptation

Edmond S.L. Ho∗ Taku Komura†

The University of Edinburgh

Chiew-Lan Tai‡

Hong Kong University of Science and Technology

Figure 1: Our system can retarget motions of close interactions to characters of different morphologies. A judo interaction (red / orange
pair) retargeted to characters of different sizes.

Abstract

This paper presents a new method for editing and retargeting mo-
tions that involve close interactions between body parts of single
or multiple articulated characters, such as dancing, wrestling, and
sword fighting, or between characters and a restricted environment,
such as getting into a car. In such motions, the implicit spatial rela-
tionships between body parts/objects are important for capturing
the scene semantics. We introduce a simple structure called an
interaction mesh to represent such spatial relationships. By min-
imizing the local deformation of the interaction meshes of anima-
tion frames, such relationships are preserved during motion editing
while reducing the number of inappropriate interpenetrations. The
interaction mesh representation is general and applicable to various
kinds of close interactions. It also works well for interactions in-
volving contacts and tangles as well as those without any contacts.
The method is computationally efficient, allowing real-time char-
acter control. We demonstrate its effectiveness and versatility in
synthesizing a wide variety of motions with close interactions.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, surface,
solid, and object representations;

Keywords: Character Animation, Close Interaction, Spatial Rela-
tionship, Motion Editing, Motion Retargeting

∗e-mail: edmond@edho.net
†e-mail: tkomura@ed.ac.uk
‡e-mail: taicl@cse.ust.hk

1 Introduction

Close interactions, not necessarily with any contacts, between dif-
ferent body parts of single or multiple characters or with the en-
vironment are common in computer animation and 3D computer
games. Yoga, wrestling, dancing and moving through a constrained
environment are some examples. In such motions, the spatial rela-
tionships between different body parts of characters are important
in capturing the semantics of the scene. When an animator synthe-
sizes or edits such movements, special care is needed to preserve
these spatial relationships, for example, “arching back to avoid a
punch”, “hands extending around each other”, “two bodies moving
synchronously in close proximity” or “getting into a small car by
bending down”. However, traditionally, such spatial relationships
exist only in the animator’s mind and are not digitally embedded
into the data. Although humans use spatial relationships to recog-
nize semantics of interactions, their usage has not been considered
much in character animation.

Existing scene representations have a fundamental limitation in
handling such close interactions. Currently, a motion is typically
described in terms of joint angles and kinematic constraints such as
contacts. With this representation, automatically computing a valid
motion requires randomized exploration and significant computa-
tion for collision detection. The animator also needs to shoulder
the burden of specifying all the kinematic constraints in advance.
From the animator’s perspective, this is impractical and not con-
ductive to manual editing. Competitive automatic solutions require
an effective representation that allows the extraction of spatial re-
lationships from existing motion data and synthesis of new anima-
tions that preserve these relationships. Such a representation will
not only allow quantitative evaluation of the way different body
parts are interacting, but also facilitate qualitative characterization
of scene semantics.

In this paper, we propose a simple representation which we call
the interaction mesh to represent the spatial relationships between
nearby body parts. The interaction mesh is a volumetric mesh
defined by the joints of the characters and the vertices of the ob-
jects/environment with which the characters are interacting. When
editing or retargeting the movements, the motions are automatically
adapted by deforming the interaction meshes at all frames with ef-
ficient Laplacian deformation techniques [Alexa 2003; Zhou et al.
2005]. The high-level semantics of the interactions are maintained
through preserving the local details of the interaction meshes.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

Figure 2: The posture of an articulated body retargeted to a new
morphology with longer red/green and shorter blue segments. Note
that a naı̈ve approach by joint angles results in a change of context.

The interaction mesh representation is general. It provides a unified
treatment for interacting body parts of single or multiple characters
as well as objects in the environment. As a result, it is applicable
to many types of scenarios, such as when single character’s actions
involve close interactions between different body parts (dancing) or
multi-character interactions (wrestling, fighting games). Addition-
ally, the motions may either involve much tangling and contacts
(e.g. judo, Fig. 1) or little contact (e.g. Lambada dance). Addition-
ally, it can be applied either per-frame or in the space-time domain
according to the complexity of the problem and the available com-
puting resources.

Motion adaptation with the interaction mesh is fully automatic.
When the animator changes the size or morphology of the char-
acters or edits parts of the motion, the system automatically de-
forms the interaction meshes at all the frames using a spacetime
optimization and creates a new motion sequence that preserves the
original context of the scene. No constraints need to be specified by
the animator since they are all encoded in the interaction meshes.
If desired, the user may add extra constraints such as anchoring
the bodies at the feet. The approach is efficient, allowing real-time
control of characters in virtual environments. Specifically, the com-
putational cost increases only linearly in the number of frames and
the complexity of the articulated body structures.

The interaction mesh is useful for synthesizing motions for films,
computer games and digital mannequin systems. We demonstrate
its usefulness in character animation by retargeting captured human
motions to characters of very different proportions and volumes,
such as a monkey and also by editing the motions of multiple char-
acters while preserving the original context of the scene.

Contributions We introduce a new representation called the
interaction mesh for encoding the spatial relationships between
closely interacting body parts of articulated characters and objects
in environment. We then present an automatic method that uses
the interaction mesh for editing or retargeting motions with close
interactions. The synthesized motions preserve the spatial relation-
ships, and thus the scene semantics, while reducing the number of
inappropriate interpenetrations.

2 Related Work

Most existing motion synthesis methods use kinematic constraints
such as positional constraints to enforce a spatial relationship be-
tween characters and the environment. A few more recent works
on character animation consider implicit spatial relationships.

Constraint-based motion synthesis Since kinematic con-
straints can usually be represented by single equations, they can
be easily embedded into optimization problems for motion synthe-
sis. Such an approach has been adopted for physically-based an-
imation [Popović and Witkin 1999; Komura et al. 2000; Liu and
Popović’ 2002; Fang and Pollard 2003], motion editing [Gleicher

1997; Callennec and Boulic 2004; Komura et al. 2004; Liu et al.
2006; Shum et al. 2009] and motion retargeting [Gleicher 1998;
Lee and Shin 1999; Choi and Ko 2000]. One of the early works by
Gleicher [1998] handles close interactions of multiple characters.
He retargets close dancing motions of two characters to bodies of
different sizes while keeping their hands connected using positional
constraints. Other methods avoid penetrations of interacting body
parts by using inequality constraints [Liu et al. 2006] or a combi-
nation of collision detections and equality constraints [Xu et al.
2007; Shi et al. 2007]. These methods produce excellent results
for interactions with contacts, however, they are not applicable for
maintaining spatial relationships that are less explicit, because rep-
resenting them as single equations is difficult. For example, in Lam-
bada dances, the dancers twist their bodies around each other with-
out necessarily any body contact. Handling such motions where
the interaction conditions are largely implicit is difficult since the
context of the scene must be preserved while avoiding penetra-
tions and collisions. Without a good representation of such im-
plicit spatial relationships, the motion synthesis requires complex
global path planners involving significant collision detection effort
and randomized exploration [LaValle and Kuffner 2001; Yamane
et al. 2004; Shapiro et al. 2007], which is difficult for large num-
bers of degrees of freedom.

Character animation by spatial relationships There have been
a few recent works which take into account the implicit spatial rela-
tionships of multiple characters when synthesizing new animations.
Kwon et al. [2008] handle the spatial relationships between char-
acters in group motions by encoding the neighborhood formations
and individual trajectories as Laplacian coordinates. When editing
the trajectories, the relative spatial arrangements of characters are
preserved by applying Laplacian mesh editing techniques [Alexa
2003; Sorkine et al. 2004]. Our method is similar in that we also
employ Laplacian mesh editing technique, but we are addressing
a very different problem. The individual characters in their case
are 2D particles with no close interactions. In contrast, our method
aims to preserve the spatial relationships between the bodies of 3D
articulated characters, which requires considering the connections
at the joints, rigidity of the body components and penetrations be-
tween them.

Ho and Komura [2009b] use Gauss Linking Integral to detect tan-
gled limbs and encode them using rational tangles for motion re-
trieval. They later proposed a new representation called topology
coordinates for representing tangled body parts [Ho and Komura
2009a] and applied it to synthesize character motions in close con-
tact. These methods are adequate for handling motions involving
tangles between 1D manifolds such as strands or skeletons. How-
ever, extension to motions involving character shapes seems diffi-
cult since relationships between rigid bodies or surfaces need to be
encoded. Further, these methods cannot handle close interactions
without any tangles. The proposed method considers the relation-
ships among rigid body parts and is more general since it can handle
motions of close interactions with/without tangles.

A recent work by Zhou et al. [2010] for deformation transfer repre-
sents the spatial relationships between multiple components of an
object by Euclidean distance and encode them using a minimum
spanning tree. Since the spatial relationships are assumed to be
fixed (same as rest pose) during deformation, the method is not ap-
plicable to motions with time-varying spatial relationships.

3 Overview

We give an overview of our method in this section. First, the data
of the original characters and the motion is loaded into our sys-

33:2 • E. Ho et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

tem. Each body segment of the character model is surrounded by
a bounding volume which will be used for collision detection. The
interaction mesh is then computed for every time frame.

Next, the user edits or retargets the motion by specifying some of
the following: the target body sizes, morphology, target positions
or new trajectories of some body parts. These constraint parame-
ters are then interpolated and used to morph the original bodies to
the target bodies. At every morph-step, the entire motion is adapted
towards achieving the target motion. This iterative approach is nec-
essary since the collisions between the body parts/objects need to
be carefully monitored and resolved.

At every morph-step, the system adapts the motion by minimizing
the Laplacian deformation of the interaction meshes at all the ani-
mation frames (or a fixed window of frames at a time, according to
available computing resources) and the acceleration of the bodies in
these frames (see Fig. 2 for an example of the adapted result of one
frame). This spacetime optimization is performed to ensure tempo-
ral coherence of the motion. The optimization is subject to various
constraints, namely, bone-length constraints, collision constraints
and positional constraints. Collisions are then detected between the
bounding volumes. If collisions are detected, the penetration depths
are evaluated and a new set of collision constraints are defined to
resolve the penetrations in the next morph-step.

4 Interaction Mesh

In this section, we describe how we compute the interaction meshes
for a given motion. We assume that the mesh characters are rigged
with skeletons, and each body segment is bounded by a volume (we
use capsules and boxes in our experiments).

The postures of the characters are represented by the positions of
the joints, rather than the joint angles. Using the joint positions
as parameters has the advantage of making the constraint matrix
sparse since the joints are treated as independent particles. In con-
trast, using the joint angles as parameters makes the Jacobian matrix
very dense, as the joints near the root affect the movements of all
the joints below in the hierarchy [Shi et al. 2007].

We compute the volumetric interaction mesh for every animation
frame. Using the positions of joints and vertices of objects as a
point cloud, we apply Delaunay tetrahedralization [Si and Gaertner
2005] (see Figure 2). Note that the spatial relationships which we
want to preserve are those between body parts that are in close prox-
imity and are not occluded by other parts. Since the Delaunay tetra-
hedralization favors connecting such parts with edges, the Lapla-
cian coordinates of vertices which are defined by vertex neighbor-
hood will lead to mutual influence between these body parts. By
the nature of Laplacian mesh editing in preserving local details, the
spatial relationships of our interest will be maintained.

The orientation of some body segments cannot be computed only
from the positions of joints bounding that segment. For example,
the joint positions of the elbow and the wrist are insufficient to con-
firm the rotation around the forearm. In order to compute such
orientations, we sample one extra virtual vertex on the surface of
each bounding volume, as in [Shi et al. 2007]. These additional
virtual vertices are added to the point cloud when defining the in-
teraction mesh. Since each virtual vertex is not rigidly constrained
to the body parts, its position is brought back to the original local
coordinate frame once the bone’s orientation is confirmed. Another
possible solution is to use inverse kinematics. The orientation of
the body segments can be inferred from the joint positions and the
orientation in the original motion [Bodenheimer et al. 1997]. Such
an approach can keep the number of vertices in the interaction mesh
low.

5 Spacetime Deformation

In this section we present the spacetime optimization problem that
we solve to adapt the motion at each morph-step. The spatial rela-
tionships of the body parts/objects are preserved by minimizing the
Laplacian deformation energy of all the interaction meshes [Alexa
2003; Zhou et al. 2005] subject to constraints derived from the mor-
phed body sizes, detected collision and user-defined position con-
straints. We also introduce an acceleration energy to reduce jagged-
ness between frames.

Deformation energy Let m be the number of vertices in the in-
teraction mesh, pi

j
(1 ≤ j ≤ m) be the vertices at frame i, Vi be a

vector of size 3m that includes all pi
j
such that Vi = (p

i
1

⊺

, · · · ,pim
⊺

),

and pi
j

′
and V′

i
be the updated vectors after the deformation. The

deformation energy of the mesh is defined as

EL(V
′
i) =

∑

j

1

2
‖δ j −L(p

i
j

′
)‖2 (1)

=
1

2
V′i
⊺
M
⊺

i
MiV

′
i −b

⊺

i
MiV

′
i +
1

2
b
⊺

i
bi (2)

where L is the operator to compute the Laplacian coordinates from
the vertex locations Vi, δ j is the original Laplacian coordinate, and
Mi,bi are the matrix and vector, respectively, computed by expand-
ing Eq.(1). The Laplacian coordinates are calculated by:

L(p j) = p j −
∑

l∈N j

w
j

l
pl (3)

where N j is the one-ring neighborhood of p j and w
j

l
are the normal-

ized weights which are set as inversely proportional to the distance
between the vertices so that farther apart vertices have less influence
on each other.

Acceleration energy To reduce jaggy jumps between frames,
we introduce an acceleration energy term EA which imposes tem-
poral relations between corresponding vertices in adjacent frames.
Specifically, to reduce sudden acceleration, we minimize the move-
ment of the corresponding vertices in adjacent frames:

EA(V
′
i−1,V

′
i ,V
′
i+1) =

1

2
‖V′i−1 −2V

′
i +V

′
i+1‖

2 (4)

where V′
i
is the set of vertices at frame i.

5.1 Constraints

Here we explain the bone-length constraints, positional constraints
and collision constraints imposed in the spacetime deformation.

Bone-length constraints We introduce the bone-length con-
straints in order to morph the bone lengths (distance between ad-
jacent joints) from the original scales to the target scales. In each
morph-step and each animation frame, the target length le for each
bone e is computed by linearly blending the original and final
lengths. Then, a constraint enforcing the target length is imposed

as (‖p1e
′
−p2e

′
‖− le)

2 where p1e
′
,p2e
′
are the end vertices of the edge

e. Linearizing all the bone-length constraints result in

CB(V
′
i) = BiV

′
i − l, (5)

where Bi is the Jacobian matrix and l is a vector of constant terms.

Spatial Relationship Preserving Character Motion Adaptation • 33:3

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

Sometimes the bone-length constraints may conflict with the Lapla-
cian deformation energy which means satisfying the bone-length
constraints increases the Laplacian deformation energy. This con-
flict is the main source of slow convergence. We cope with this
problem by excluding the vertex pb from the neighborhood of ver-
tex pa when computing the Laplacian coordinate of pa if the edge
connecting pa and pb corresponds to a bone of the body.

Positional constraints The user can add positional constraints
by anchoring some joints or a linear combination of their locations.
The original trajectories of these body parts are gradually morphed
to the given trajectories in each morph-step. We compute the target
locations of these parts, Pi, using linear interpolation, and write the
positional constraints as:

CK (Vi
′) = KiV

′
i −Pi (6)

where K is a 3k × 3m weight matrix that defines the influence of
each joint in each positional constraint, and k is the number of po-
sitional constraints.

Collision constraints The collision constraints prevent penetra-
tion between the bounding volumes of the skeleton. We perform
collision detection by applying the ODE library [Smith 2005] to
the current configuration of the bounding volumes. Specifically,
when a penetration is detected, we compute the penetration depth,
directions and the point pair penetrating each other the farthest and
add the following constraints:

CC(V
′
i) = JiV

′
i −di (7)

where Ji is the Jacobian of the positions of the colliding parts with
respect to the joint positions, and di is the penetration depth multi-
plied to the normal vectors of the penetrated surface. The Jacobian
is computed by finite differencing. The joint vertices are moved
and the locations of the penetrating points are recomputed accord-
ing to the posture. We do not apply collision detection to adjacent
body parts along the body tree structure as self-penetrations easily
happen when the joints are bent.

Constraint energy We separate the constraints in Eq.(5)-7 into
soft and hard constraints:

FiV
′
i = fi (soft), HiV

′
i = hi (hard) (8)

and define a constraint energy that represents the amount of viola-
tion of the soft constraints:

EC(V
′
i) =

1

2
V′i
⊺
Fi
⊺WFiVi

′ − fi
⊺WFiV

′
i +
1

2
fi
⊺Wfi. (9)

whereW is a square diagnol matrix that assigns a different weight
to each constraint.

By default, we set the bone-length constraints and one positional
constraint (supporting foot) hard, and the collision constraints and
the rest of positional constraints soft. The bone-length constraints
are set hard so that the bodies are correctly scaled to the target val-
ues. Soft collision constraints stabilize the motion when there is
little open space. It also provides the animator some results when
collisions cannot be avoided due to insufficient open space when
bodies are enlarged. It is also necessary to set the other positional
constraints soft to avoid over constraining. By default, the weights
inW are set 4.0 and 0.4 for the collision and additional positional
constraints, respectively. The constraints can be switched between
soft and hard according to the desired animation effect. When the
number of morph steps is small, we also need to set the bone-length
constraints soft, and their weights are set to 2.0.

Algorithm 1Motion Adaptation by Interaction Mesh

Input: Skeleton and input motion sequence
initial / final body scaling factors: s0,s f
locations of initial/final positional constraints: p0,p f
Output: Target motion sequence
(Initialization)
- Compute the interaction meshes (vertex positions and connec-
tivity) of all input frames.
(Motion Adaptation)
for k=1 to N morph-steps do
- Update body scale / location of positional constraints:

sk ←
N−k
N s0 +

k
N s f , p j←

N−k
N p0 +

k
N p f

- Update the constraint matrices Fi,Hi, the target values of
the constraints fi,hi in Eq.(8) and the deformation vector bi in
Eq.(2) for frames i = 1, ...,n.
- Update the vertex locations by solving Eq.(10).
- Compute segment orientations and update virtual vertices.
end for

5.2 Iterative Morphing

At every morph-step, the body sizes and the positional constraints
are updated, and the motions of the characters are adapted by min-
imizing the sum of the deformation (Eq.1), acceleration (Eq.4)
and constraint energy (Eq.9) of all frames subject to the hard con-
straints. The adapted motion is computed by solving

argminV′
i
,λi(1≤i≤n)

n
∑

i

EL +w∆EA +EC +λ
⊺

i
(HiV

′
i −hi) (10)

where n is the number of frames, V′
i
is the set of new vertex posi-

tions at frame i, λi are the Lagrange multipliers and w∆ is a constant
weight (we use 0.2). Note that EA is not defined for the first and
last frames, hence we set them to zero. The spacetime optimization
problem in Eq.(10) can be solved by differentiating it with respect
to V′

i
and λi, and solving the following linear equation:

(

M⊺M+w∆A
⊺A+F k

⊺

WF k Ck
⊺

Ck 0

)(

V

λ

)

=

(

M⊺B+F k
⊺

W f
H

)

(11)

where B, H , f , V and λ are vectors that include bi (in Eq.2),
hi, fi (in Eq.8), V

′
i
and λi for all the frames, respectively, i.e. B =

(b
⊺

1
, ...b

⊺

n)
⊺, H = (h

⊺

1
, ...h

⊺

n)
⊺, f = (f

⊺

1
, ...f
⊺

n)
⊺, V = (V

′⊺

1
, ...V

′⊺
n)
⊺,

λ = (λ
⊺

1
, ...λ

⊺

n)
⊺ and M is the Laplacian matrix, F k is a soft con-

straint matrix at the k-th morph-step, each of which includesMi in
Eq.(2), and Fi in Eq.(8) for all the frames, respectively:

M =

M1 · · · 0
.
.
.
. . .

0 Mn

,F k =

Fk
1
· · · 0

.

.

.
. . .

0 Fkn

,

and A is a matrix that computes the acceleration for all the frames
fromV,W = diag(W, ...,W), and Ck is the constraint matrix at the
k-th morph-step, which includes Hi in Eq.(8) for all the frames:

A =

0
I −2I I

. . .

I −2I I
0

,Ck =

Hk
1
· · · 0

.

.

.
. . .

0 Hkn

.

33:4 • E. Ho et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

Figure 3: Flipping of a tetrahedron during a morph-step may lead
to a change of spatial context: (left) initial posture, (middle) flip-
ping happens at the left lower leg of the yellow character when
using 5 morph-steps, (right) flipping avoided when using 10 morph-
steps.

Our motion adaptation algorithm is summarized in Algorithm 1.

The interaction meshes are defined for the original motion frames
and their connectivities are kept unchanged at all the morph-steps,
which results in a constant M. Note that re-computing the tetra-
hedralization at each morph-step would result in gradual drifting
of the motion away from the original sequence. Keeping the mesh
topology from the original motion helps to preserve the spatial re-
lationships of the components in the original motion.

Possible artifacts and solutions Due to the non-uniform
weighting of the edges, drastic updates of the morphing parame-
ters such as the character sizes may result in flipping of the tetrahe-
dra in the interaction meshes. Such flipping, if it occurs in an open
space does not cause noticeable artifacts, but may result in a change
of context if it happens with a tetrahedron composed of two bones
which are nearby but not adjacent to each other. We prevent the
flipping by detecting collisions between the body parts and applying
the collision constraints (Eq.7) at each morph step. However, the
system may fail when the linearization of the collision constraints
breaks down, which happens when the body sizes are very narrow
and the penetration depth is too large. This results in pushing out
the penetrating body in the wrong direction (see Fig. 3). The prob-
lem can be avoided by giving enough volume to the body parts and
setting small morph steps. We obtained satisfactory results using
10 morph-steps for all the examples.

The soft collision constraints can result in penetrations when the
bodies are enlarged too much while there is limited open space.
We can alert the user of the lack of space by giving the sum of
the squares of penetration depth for reference. The user can then
choose to either enlarge the environment or stop scaling.

The system may become unstable when the original motion con-
tains movements where the body parts pass through each other.
When this happens, the direction the collision constraint pushes the
bodies away from each other will turn opposite at some moment,
resulting in a large movement in one frame. This contradicts the
minimization of acceleration energy and causes vibrations. Switch-
ing off the collision constraints at the frames of these pass throughs
can remove such artifacts.

6 Experimental Results

In this section, we show experimental results from applying our
motion retargeting method to character animation. We apply it to
several types of motions with close interactions, namely, between
body parts of a single character or multiple characters, and between
a character and its environment. We also demonstrate its useful-
ness for real-time character control. The heights of the feet are all

Figure 4: Snapshots of a sword attacking motion (left) retargeted
to characters of different morphologies (middle, right).

Figure 5: Snapshots of a back breaking attacking motion (left)
retargeted to characters of different morphologies (middle, right).

constrained to the original values by hard constraints by default,
which are necessary especially when the characters are standing on
the ground. The readers are referred to the supplementary video for
further details.

6.1 Retargeting Motions of Close Interactions

First we show the results of retargeting motions involving only
characters. We use motions involving much tangling and contacts,
such as judo, as well as those with few contacts, such as dancing
and attackers/defenders in fighting games.

Judo attacks Our first motion example is a judo “Ogoshi throw”
in which the attacker holds the arm and the waist of the defender
and throws the defender by carrying him/her onto the back. We
retarget the motions of the thrower and the defender to characters
of various morphologies. We use the body sizes of characters in
Allen et al. [2003] as reference (See Fig. 1). Here, although the
proportions and the bounding volumes of the new characters are
completely different from those of the original characters, our sys-
tem can still produce the Ogoshi throw. Note that previous motion
editing/retargeting approaches are difficult to apply to this kind of
close interactions since they only consider the joint angles of the
original motion but not the spatial relationships. As a result, the
retargeted motion may have a different context (e.g. the arms ex-
tend to the other side of the defender’s body). They also require the
animators to manually specify all the positional constraints in all
the frames, such as the attacker’s hand holding the defender’s body.
This can be a tedious task for the animator.

Fighting scenes Our next two motion examples are fighting
scenes involving two characters provided by a game company.

The first scene involves a character holding a sword attacking its en-
emy. The sword penetrates through the enemy character when the
enemy is stabbed, and therefore, we turned off the collision con-
straint in those frames. The second scene is from the same game.
The character holding the sword breaks the back of the enemy with
both arms and drops it. The sword unintentionally passes through
the arm of the defender in some of the frames, which is due to
the manual design. Again, we turned off the collision constraint in
those frames. Both the attacker’s and defender’s morphologies are
changed and animations of different combination of bodies are cre-
ated. Snapshots of the original and synthesized motions are shown
in Fig. 4 and Fig. 5, respectively. Note that manual editing would

Spatial Relationship Preserving Character Motion Adaptation • 33:5

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

Figure 6: (left) A posture of a turn kick interaction. (middle, right)
The animator drags the left foot of the yellow character by mouse
and the other character moves to preserve the spatial relationship.

Figure 7: Original dancing motion (middle) and the retargeted
results to a monkey model with long arms using a joint-angle based
method (left) and using our method (right).

require a lot of care to avoid unintentional penetrations of the sword
into the body. Our method can automatically produce the motion
of passing the sword into the space between the enemy’s arm and
torso. These examples show that our method can also be used for
manually designed motions which are not penetration-free. In such
cases, the context of the penetrations (e.g. stabbing the enemy) are
preserved in the synthesized results. Feedback from the game com-
pany indicates that the quality of our retargeted movements is high
enough for games usage.

Interactive character control Next, we show a demo of using
the interaction mesh for real-time control of characters. Pausing
the animation of interaction at some frame, we can let the user in-
teractively control a body part using inverse kinematics while main-
taining its spatial relationships with the other character(s). In such
cases, we solve Eq.(11) for a single frame rather than for the entire
motion, which provides real-time performance. The other charac-
ter(s) will follow the movements of the controlled character accord-
ing to the interaction mesh at that frame. The controlled body part
is softly constrained by an additional positional constraint. An ex-
ample of editing a posture in a turn-kick motion is shown in Fig. 6.
The updates in the edited frame can be propagated to the whole
motion by iteratively solving Eq.(10) using the edited posture as a
constraint.

Single character motions We use a dancing motion in which the
character performs an arms cycling motion and retarget it to a char-
acter with monkey proportions (Fig. 7). Our method can preserve
the context of the motion despite the much longer arms of the mon-
key character. In contrast, the method of [Lyard and Magnenat-
Thalmann 2008] results in a motion with many collisions, causing
the movements to appear unstable. Note that since this motion does
not involve any tangles, the topology coordinates [Ho and Komura
2009a] are also difficult to apply.

Figure 8: Snapshots of a character getting into and riding a car
model; (top) original character and (bottom) a tall fat character.

6.2 Motion Adaptation in a Constrained Environment

Motions in a constrained environment, such as getting in and out
of a car, involve close maneuvers and collision avoidance. Retar-
geting such motions to characters of different sizes or adapting the
motions to environment with different parameters (e.g. size of car)
has a great demand in CAD design and digital mannequins [Badler
et al. 1999]. Here we show examples of using the interaction mesh
for such a purpose. We captured the motion of a person getting
into a car and holding the steering wheel. The environment is com-
posed of simple polylines representing the car doors, ceiling, floor,
seats, and steering wheel. The interaction mesh is composed of the
vertices of the environment and the skeleton joints and end effec-
tors. Snapshots of the input motion and that retargeted to a scaled
character are shown in Fig. 8. Observe that the character’s motion
is successfully adapted to the new character size. Since some of
the interactions of the character with the car, such as ducking and
passing through the narrow space, cannot be described only with
explicit constraints such as contacts, these motions are difficult to
handle for previous methods.

6.3 Computational Costs

The main bottleneck of our method is solving the large linear equa-
tion in Eq.(11). We use UMFPACK [Davis 2004] and GotoBLAS
[Goto and Van De Geijn 2008]. Since the Laplacian matrixM and
the constraint matrix Ck are both sparse, the computation only in-
creases linearly with respect to the number of vertices in all the
interaction meshes. Therefore, the complexity of the problem is
O(m×n), where m is the number of vertices in each mesh and n is
the number of frames. For all the retargeting examples shown in
this paper, the computation required for each motion is around 1
minute for an animation of 100 frames, using one core of a Core i7
2.67GHz CPU. Since most of the computation, such as the compu-
tation of the Laplacian and constraint matrices and solving the large
linear system [Bolz et al. 2003] are highly parallelizable, much
faster response can be expected with GPU implementations.

33:6 • E. Ho et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

7 Discussions

In this section, we compare our approach with previous methods in
terms of advantages and limitations.

Simply combining the kinematic constraints and collision avoid-
ance as is done in [Lyard and Magnenat-Thalmann 2008] cannot
preserve spatial relationships between bones. Although collision
detection can avoid interpenetration of body parts, the movement
of one part does not affect the movements of the other parts un-
til collision occurs. Moreover, as shown in Fig. 7, left, the collision
does not necessarily repulse the body in the direction that maintains
the context of the original scene. As a result, coordination between
the bodies can easily be lost. With our method, the interaction mesh
moves all the nearby bones together such that their spatial relation-
ships are maintained.

Shi et al. [2007] apply a cascading scheme for motion retargeting
to speed up the process and make use of the GPU resources. Such
a cascading scheme is inapplicable to the motions of our interest
since it may greatly update the posture after one iteration. Large
updates may be acceptable for open postures such as standing and
reaching out for an object, however for motions with close interac-
tions between body parts, resolving all the collisions after a large
update may result in a change of context, for example, the body
parts may be flipped to the opposite side. This also explains why
we need to gradually morph the morphology of the characters and
sizes of objects in the scene.

The concept of the interaction mesh is very general. It is possible to
compute the interaction mesh using vertices of freeformmeshes and
use it for shape deformation. This can be an interesting application
of deformation transfer [Sumner and Popovic 2004; Zayer et al.
2005] and cloth animation. For example, animation of a character
wrapping an object or wearing clothes.

Using a high resolution volumetric mesh, such as one defined by
the surface of a mesh character, may be a good solution for intri-
cate finger motions, such as manipulating a thread or small object,
as it can represent the details of the interaction between the fingers’
surface and the object. However, applying such a method for space-
time control of a full body character will be very computationally
costly due to the huge number of vertices.

Spacetime optimization is known to be an important tool for creat-
ing realistic character motions since it allows the characters to pre-
pare for the interactions ahead along the timeline [Liu et al. 2006],
such as an early bending of the torso before entering a car. It also
removes jaggedness from the movements, which is a drawback of
frame-based approaches. Therefore, we argue that our combined
use of a volumetric structure defined by joint positions and the
spacetime optimization is a good design choice for efficient syn-
thesis of realistic motions of interactions.

The acceleration energy term might unnecessarily smooth the large
accelerations from impacts, which is often an important feature of
motions. Experimentally, we have found the advantage of using the
acceleration term outweigh the smoothing of high impulse move-
ments. One possible solution for maintaining the features of high
acceleration is to use inter-frame Laplacian coordinates proposed in
Kwon et al. [2008] instead of the acceleration energy.

Limitations Our method may fail when the constraints are dras-
tically different from those in the original motion, such as when
one of the interacting characters is scaled too small or too large.
In such situations, the body parts may be too far apart to maintain
the interactions. However, any methods that use inverse kinemat-
ics are not immune to such a problem under extreme scaling. An

example of this vulnerability is when a character is in contact with
another object at many parts of its body, for example, a full body
hold. If the object’s size is scaled down, the Laplacian deforma-
tion will try to preserve the spatial relationship at all the contact
areas, which is physically impossible due to the rigidity of the body
parts. As a result, the deformation error will be shared among all
the contact areas, resulting in the loss of all contacts. This is related
to the fact that our method does not require user-specified contact
constraints. A simple possible solution is to prioritize such contacts
and impose contact constraints at areas which appear to be impor-
tant. Another solution may be to recompute the interaction meshes
at certain morph-steps when the spatial relationship is difficult to
preserve and allow the mesh to drift from the original topology.

8 Conclusion and Future Work

In this paper, we have presented a new method to edit and retarget
character animation that involves many close interactions by intro-
ducing a new representation called interaction mesh. When up-
dating the motion, the spatial relationships between different body
components and objects can be preserved by applying a spacetime
optimization to minimize the deformation of the interaction meshes
subject to collision constraints as well as bone-length and positional
constraints. The method is fully automatic, not requiring manual in-
tervention from the user. We have demonstrated the effectiveness
of the proposed method by showing realistic synthesized anima-
tions of various types of close interactions, which are difficult to
produce using previous methods.

As a future work, we plan to numerically evaluate the topological
and geometric features of the interaction meshes, and introduce a
metric to compare motions at the level of interaction meshes. Our
method can then be extended for use in reinforcement learning, en-
abling computer-controlled characters to smartly interact with user-
controlled characters in closely interacting environments. Another
possible research direction is to apply our method for controlling
characters in physically-based environments, such as by combin-
ing it with the balance keeping techniques in [da Silva et al. 2008;
Macchietto et al. 2009]. Tackling such a problem may also lead
to solutions for controlling multi-biped robots to cooperatively ac-
complish tasks such as carrying objects together.

Acknowledgement

We thank the anonymous reviewers for their constructive com-
ments, Oscar Kin-Chung Au and Hubert Pak-Ho Shum for valuable
feedback and AdamBarnett for the video narration and suggestions.
We also thank NAMCO BANDAI Games Inc. for providing the
game motion data. This work was partially supported by grants
from EPSRC (EP/H012338/1) and the Hong Kong Research Grant
Council (Project No. GRF619908).

References

ALEXA, M. 2003. Differential coordinates for local mesh morph-
ing and deformation. The Visual Computer 19, 2-3, 105–114.

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2003. The space of
human body shapes: reconstruction and parameterization from
range scans. ACM Transactions on Graphics 22, 3 (Jul.), 587–
594.

BADLER, N. I., PALMER, M. S., AND BINDIGANAVALE, R. 1999.
Animation control for real-time virtual humans. Communica-
tions of the ACM 42, 8, 64–73.

Spatial Relationship Preserving Character Motion Adaptation • 33:7

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

BODENHEIMER, B., ROSE, C., ROSENTHAL, S., AND PELLA., J.
1997. The process of motion capture: Dealing with the data. In
Computer Animation and Simulation 97, 318.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖODER, P.
2003. Sparse matrix solvers on the gpu: conjugate gradients and
multigrid. ACM Transactions on Graphics 22, 3 (Jul.), 917–924.

CALLENNEC, B. L., AND BOULIC, R. 2004. Interactive motion
deformation with prioritized constraints. In Proceedings of ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
163–171.

CHOI, K.-J., AND KO, H.-S. 2000. Online motion retargeting.
Journal of Visualization and Computer and Animation 11, 5,
223–235.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Interactive
simulation of stylized human locomotion. ACM Transactions on
Graphics 27, 3 (Aug.), 82:1–10.

DAVIS, T. A. 2004. Algorithm 832: Umfpack, an unsymmetric-
pattern multifrontal method. ACM Transactions on Mathemati-
cal Software 30, 2 (Jun.), 196–199.

FANG, A. C., AND POLLARD, N. S. 2003. Efficient synthesis of
physically valid human motion. ACM Transactions on Graphics
22, 3 (Jul.), 417–426.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In Proceedings of Symposium on Interactive 3D Graphics, 139–
148.

GLEICHER, M. 1998. Retargetting motion to new characters. In
Proceedings of SIGGRAPH 98, ACM Press / ACM SIGGRAPH,
M. Cohen, Ed., Computer Graphics Proceedings, Annual Con-
ference Series, ACM, 33–42.

GOTO, K., AND VAN DE GEIJN, R. 2008. High-performance
implementation of the level-3 blas. ACM Transactions on Math-
ematical Software 35, 1 (Jul.), 1–14.

HO, E. S. L., AND KOMURA, T. 2009. Character motion synthesis
by topology coordinates. Computer Graphics Forum 28, 2, 299-
308.

HO, E. S. L., AND KOMURA, T. 2009. Indexing and retrieving
motions of characters in close contact. IEEE Transactions on
Visualization and Computer Graphics 15, 3 (May), 481–492.

KOMURA, T., SHINAGAWA, Y., AND KUNII, T. L. 2000. Creat-
ing and retargetting motion by the musculoskeletal human body
model. The Visual Computer, 5, 254–270.

KOMURA, T., LEUNG, H., AND KUFFNER, J. 2004. Animating
reactive motions for biped locomotion. In Proceedings of ACM
Virtual Reality Software and Technology, 32–40.

KWON, T., LEE, K. H., LEE, J., AND TAKAHASHI, S. 2008.
Group motion editing. ACM Transactions on Graphics 27, 3
(Aug.), 80:1–8.

LAVALLE, S., AND KUFFNER, J. 2001. Rapidly-exploring random
trees: Progress and prospects. In Robotics: The Algorithmic
Perspective. 4th Int’l Workshop on the Algorithmic Foundations
of Robotics, 293–308.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to in-
teractive motion editing for human-like figures. In Proceedings
of SIGGRAPH 99, ACM Press / ACM SIGGRAPH, A. Rock-
wood, Ed., Computer Graphics Proceedings, Annual Conference
Series, ACM, 39–48.

LIU, C. K., AND POPOVIĆ’, Z. 2002. Synthesis of complex dy-
namic character motion from simple animations. ACM Transac-
tions on Graphics 21, 3 (Jul.), 408–416.

LIU, C. K., HERTZMANN, A., AND POPOVIC, Z. 2006. Composi-
tion of complex optimal multi-character motions. In Proceedings
of ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, 215–222.

LYARD, E., AND MAGNENAT-THALMANN, N. 2008. Motion
adaptation based on character shape. Computer Animation and
Virtual Worlds 19, 3-4, 189–198.

MACCHIETTO, A., ZORDAN, V., AND SHELTON, C. R. 2009.
Momentum control for balance. ACM Transactions on Graphics
28, 3 (Aug.), 80:1–8.

POPOVIĆ, Z., AND WITKIN, A. 1999. Physically based motion
transformation. In Proceedings of SIGGRAPH 99, ACM Press /
ACM SIGGRAPH, A. Rockwood, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, 11–20.

SHAPIRO, A., KALLMANN, M., AND FALOUTSOS, P. 2007. In-
teractive motion correction and object manipulation. In Proceed-
ings of ACM SIGGRAPH Symposium on Interactive 3D graphics
and Games,137-144.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND
GUO, B. 2007. Mesh puppetry: Cascading optimization of
mesh deformation with inverse kinematics. ACM Transactions
on Graphics 26, 3 (Jul.), 81:1-9

SHUM, H. P. H., KOMURA, T., AND YADAV, P. 2009. Angular
momentum guided motion concatenation. Computer Animation
and Virtual Worlds 20, 2-3, 385–394.

SI, H., AND GAERTNER, K. 2005. Meshing piecewise linear com-
plexes by constrained delaunay tetrahedralizations. In Proceed-
ings of the 14th International Meshing Roundtable, 147–163.

SMITH, R. 2005. Open dynamics engine. www.ode.org.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of the Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing, 179–188.

SUMNER, R. W., AND POPOVIC, J. 2004. Deformation transfer for
triangle meshes. ACM Transactions on Graphics 23, 3 (Aug.),
397–403.

XU, W., ZHOU, K., YU, Y., TAN, Q., PENG, Q., AND GUO, B.
2007. Gradient domain editing of deforming mesh sequences.
ACM Transactions on Graphics, 26, 3 (Jul.), 84:1–10.

YAMANE, K., KUFFNER, J., AND HODGINS, J. 2004. Synthesiz-
ing animations of human manipulation tasks. ACM Transactions
on Graphics 23, 3 (Aug.), 532–539.

ZAYER, R., RÖSSL, C., KARNI, Z., AND SEIDEL, H.-P. 2005.
Harmonic guidance for surface deformation. Computer Graph-
ics Forum 24, 3, 601–609.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO, B.,
AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph laplacian. ACM Transactions on Graphics 24,
3 (Jul.), 496–503.

ZHOU, K., XU, W., TONG, Y., AND DESBRUN, M. 2010. Defor-
mation transfer to multi-component objects. Computer Graphics
Forum 29, 2.

33:8 • E. Ho et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 33, Publication date: July 2010.

